6 research outputs found

    Grasp planning for object manipulation by an autonomous robot

    Get PDF
    L'évolution autonome d'un robot dans un environnement évolutif nécessite qu'il soit doté de capacités de perception, d'action et de décision suffisantes pour réaliser la tâche assignée. Une tâche essentielle en robotique est la manipulation d'objets et d'outils. Elle intervient non seulement pour un robot seul mais également dans des situations d'interaction avec un humain ou un autre robot quand il s’agit d’échanger des objets ou de les manipuler conjointement.\ud Cette thèse porte sur la planification de tâches de manipulation d'objets pour un robot autonome dans un environnement humain. Une architecture logicielle susceptible de résoudre ce type de problèmes au niveau géométrique est proposée. Généralement, une tâche de manipulation commence par une opération de saisie dont la qualité conditionne fortement la réussite de la tâche et pour laquelle nous proposons un planificateur basé sur les propriétés inertielles de l'objet et une décomposition en éléments quasi-convexes tout en prenant en compte les contraintes imposées par le système mobile complet dans un environnement donné.\ud Les résultats sont validés en simulation et sur le robot sur la base d’une extension des outils de planification développés au LAAS-CNRS. Le modèle géométrique 3D de l’objet peut être connu a priori ou bien acquis en ligne. Des expérimentations menées sur un robot manipulateur mobile équipé d'une pince à trois points de contacts, de capteurs de force et d'une paire de caméras stéréoscopiques ont montré la validité de l'approche.\ud The autonomous robot performance in a dynamic environment requires advanced perception, action and decision capabilities. Interaction with the environment plays a key role for a robot and it is well illustrated in object and/or tool manipulation. Interaction with humans or others robots can consist in object exchanges.\ud This thesis deals with object manipulation planning by an autonomous robot in human environments. A software architecture is proposed that is capable to solve such problems at the geometrical level. In general, a manipulation task starts by a grasp operation which quality influences strongly the success of the overall task. We propose a planner based on object inertial properties and an approximate convex decomposition. The whole mobile system taken into account in the planning process.\ud The planner has been completely implemented as an extension of the planning tools developed at LAAS-CNRS. Its results have been tested in simulation and on a robotic platform. Object models may be known a priori or acquired on-line. Experiments have been carried out with a mobile manipulator equipped with a three fingers gripper, a wrist force sensor and a stereo camera system in order to validate the approach.\ud \ud \u

    Planification de saisie pour la manipulation d'objets par un robot autonome

    No full text
    The autonomous robot performance in a dynamic environment requires advanced perception, action and decision capabilities. Interaction with the environment plays a key role for a robot and it is well illustrated in object and/or tool manipulation. Interaction with humans or others robots can consist in object exchanges. This thesis deals with object manipulation planning by an autonomous robot in human environments. A software architecture is proposed that is capable to solve such problems at the geometrical level. In general, a manipulation task starts by a grasp operation which quality influences strongly the success of the overall task. We propose a planner based on object inertial properties and an approximate convex decomposition. The whole mobile system taken into account in the planning process. The planner has been completely implemented as an extension of the planning tools developed at LAAS-CNRS. Its results have been tested in simulation and on a robotic platform. Object models may be known a priori or acquired on-line. Experiments have been carried out with a mobile manipulator equipped with a three fingers gripper, a wrist force sensor and a stereo camera system in order to validate the approach.L'évolution autonome d'un robot dans un environnement évolutif nécessite qu'il soit doté de capacités de perception, d'action et de décision suffisantes pour réaliser la tâche assignée. Une tâche essentielle en robotique est la manipulation d'objets et d'outils. Elle intervient non seulement pour un robot seul mais également dans des situations d'interaction avec un humain ou un autre robot quand il s'agit d'échanger des objets ou de les manipuler conjointement. Cette thèse porte sur la planification de tâches de manipulation d'objets pour un robot autonome dans un environnement humain. Une architecture logicielle susceptible de résoudre ce type de problèmes au niveau géométrique est proposée. Généralement, une tâche de manipulation commence par une opération de saisie dont la qualité conditionne fortement la réussite de la tâche et pour laquelle nous proposons un planificateur basé sur les propriétés inertielles de l'objet et une décomposition en éléments quasi-convexes tout en prenant en compte les contraintes imposées par le système mobile complet dans un environnement donné. Les résultats sont validés en simulation et sur le robot sur la base d'une extension des outils de planification développés au LAAS-CNRS. Le modèle géométrique 3D de l'objet peut être connu a priori ou bien acquis en ligne. Des expérimentations menées sur un robot manipulateur mobile équipé d'une pince à trois points de contacts, de capteurs de force et d'une paire de caméras stéréoscopiques ont montré la validité de l'approche

    Planification de saisie pour la manipulation d'objets par un robot autonome

    No full text
    The autonomous robot performance in a dynamic environment requires advanced perception, action and decision capabilities. Interaction with the environment plays a key role for a robot and it is well illustrated in object and/or tool manipulation. Interaction with humans or others robots can consist in object exchanges. This thesis deals with object manipulation planning by an autonomous robot in human environments. A software architecture is proposed that is capable to solve such problems at the geometrical level. In general, a manipulation task starts by a grasp operation which quality influences strongly the success of the overall task. We propose a planner based on object inertial properties and an approximate convex decomposition. The whole mobile system taken into account in the planning process. The planner has been completely implemented as an extension of the planning tools developed at LAAS-CNRS. Its results have been tested in simulation and on a robotic platform. Object models may be known a priori or acquired on-line. Experiments have been carried out with a mobile manipulator equipped with a three fingers gripper, a wrist force sensor and a stereo camera system in order to validate the approachL'évolution autonome d'un robot dans un environnement évolutif nécessite qu'il soit doté de capacités de perception, d'action et de décision suffisantes pour réaliser la tâche assignée. Une tâche essentielle en robotique est la manipulation d'objets et d'outils. Elle intervient non seulement pour un robot seul mais également dans des situations d'interaction avec un humain ou un autre robot quand il s'agit d'échanger des objets ou de les manipuler conjointement. Cette thèse porte sur la planification de tâches de manipulation d'objets pour un robot autonome dans un environnement humain. Une architecture logicielle susceptible de résoudre ce type de problèmes au niveau géométrique est proposée. Généralement, une tâche de manipulation commence par une opération de saisie dont la qualité conditionne fortement la réussite de la tâche et pour laquelle nous proposons un planificateur basé sur les propriétés inertielles de l'objet et une décomposition en éléments quasi-convexes tout en prenant en compte les contraintes imposées par le système mobile complet dans un environnement donné. Les résultats sont validés en simulation et sur le robot sur la base d'une extension des outils de planification développés au LAAS-CNRS. Le modèle géométrique 3D de l'objet peut être connu a priori ou bien acquis en ligne. Des expérimentations menées sur un robot manipulateur mobile équipé d'une pince à trois points de contacts, de capteurs de force et d'une paire de caméras stéréoscopiques ont montré la validité de l'approcheINIST-CNRS (INIST), under shelf-number: RP 17272 / SudocSudocFranceF

    Planificación de la expansión de la red de transmisión de CA considerando pérdidas

    No full text
    Este documento propone resolver el problema de planificación de la expansión de la red de transmisión (TNEP) utilizando el modelo de CA formulado con ecuaciones de flujo de carga no lineal completas, que incorporan el costo de las pérdidas en la red de transmisión. Además, la formulación descompuesta encuentra la ubicación y la cantidad de la compensación reactiva necesaria en el sistema. Se presenta una comparación entre la Programación Evolutiva (EP) y una variación del EP con un Algoritmo Cultural (CEP) para resolver este complejo problema de optimización. Los resultados se obtienen utilizando el sistema de prueba de 6 buses de Garver y el sistema de prueba IEEE de 24 buses. Índice de términos: modelo de CA, algoritmo cultural, programación evolutiva, optimización, planificación de la expansión de la red de transmisión. © 2018 IEEE.This paper proposes to solve the transmission network expansion planning problem (TNEP) using the AC model formulated with full non-linear load flow equations, incorporating the cost of losses in the transmission network. Additionally, the decomposed formulation finds the location and amount of the reactive compensation needed in the system. A comparison between Evolutionary Programming (EP) and a variation of EP with a Cultural Algorithm (CEP) is presented to solve this very complex optimization problem. The results are obtained using Garver's 6-bus test system and IEEE 24-bus test system. Index Terms-AC model, Cultural Algorithm, Evolutionary Programming, Optimization, Transmission network expansion planning.Sarajev
    corecore